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Sakamoto, Kathleen

Introduction

Breast cancer is the most common cancer diagnosed among women.
Breast cancer cells often require activation of the estrogen-specific steroid
hormone receptor by estrogen to proliferate, and it is well known that steroid
hormone receptor signaling plays a pivotal role in progression of breast cancer
disease. In this proposal, we hypothesized that a completely novel conceptual
approach known as Protac (Proteolysis Targeting Chimeric Molecule) will lead to
the ubiquitination and degradation of targeted proteins. At one end, Protac
contains the IKBa phosphopeptide that binds the ubiquitin ligase SCFO-TRcP; at
the other end, Protac contains the ligand for ER, estradiol. We previously
demonstrated that Protacs promote the ubiquitination and degradation of ER and
AR in vitro and in vivo, respectively.

Body

We proposed to develop a bioassay screen for novel b-TRCP ligands based
on the displacement of P-TRCP-bound diphosphorylated peptide. The readout for
the proposed screening assay will be fluorescence polarization (FP). FP is based on
the concept of molecular movement and rotation. By using a fluorescent dye to label
the diphosphorylated peptide, its binding to 3-TRCP can be monitored through its
speed of rotation. If the test compound binds to the same site on 13-TRCP, as does
the fluorescently labeled peptide, then the liberated fluorescent peptide will rotate or
tumble faster, and the resulting emitted light is depolarized relative to the excitation
plane. Therefore, the degree of fluorescence polarization in the presence of test
compound indicates the level of displacement of the fluorescently labeled peptide,
and thus the relative strength of binding to 13-TRCP. We had two aims. For Aim 1, a
cDNA encoding 13-TRCP will be subcloned into different expression vectors to
identify a suitable strategy for expression of recombinant protein. We will test
expression of 13-TRCP in common expression systems including E. coli, Pichia
Pastoris, and insect Sf9 or Hi5 cells. For Aim 2, anl8 amino acid diphosphorylated
peptide from IKBca will be synthesized, HPLC-purified, and coupled via its amino
terminus to the activated ester of the Molecular Probes fluorescent dye. A small
molecule library of 10,000 compounds (TimTec, Inc.) is arrayed in a 384 well format
in DMSO. Each compound (10pM final concentration) will be tested for the ability to
displace the fluorescently labeled peptide from recombinant P3-TRCP as measured
in a Wallac Victor 2 V fluorescence polarization plate reader. Confirmed positive 'hits'
will be scrutinized for 1) ease of chemical synthesis, and 2) ease of derivatization to
form a Protac that contains estradiol. These new Protacs will then be tested for their
effects on ER degradation and growth of breast cancer cells.

Since the grant was funded, we have been generating the purified f3-
TRCP. Due to technical difficulties this took longer than expected. We have
synthesized the IkBa peptide and are awaiting the coupling to the fluorescent
dye. We will be ready to being the screening as described in Aim 2 in the near
future.
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Key Research Accomplishments
Papers:

Schneekloth JS, Fonseco F, Koldobskiy M, Mandal A, Deshaies RJ, Sakamoto
KM, CM Crews. Chemical Genetic Control of Protein Levels: Selective in vivo
Targeted Degradation. J Amer Chem Soc, 126(12); 3748-3754, 2004.

Verma R, Peters NR, Tochtrop G, Sakamoto KM, D'Onofrio, Varada R, Fushman
D, Deshaies RJ, and RW King. Ubistatins, a Novel Class of Small Molecules that
inhibit Ubiquitin-Dependent Proteolysis by Binding to the Ubiquitin Chain.
Science, 306:117-120, 2004.

Sakamoto KM. Chimeric Molecules to Target Proteins for Ubiquitination and
Degradation. Methods in Enzymology (Ubiquitin and Proteasome System), in
press.

Reportable Outcomes
1. 3 manuscripts (see above and appendix)
2. Received a Ph.D. from Caltech in 2004.
3. National Institutes of Health (R21 CA108545), Ubiquitination and

Degradation in Cancer Therapy 7/1/04-6/31/06 (K. Sakamoto, P.I.)
4. DOD Postdoctoral Fellowship and Fulbright postdoctoral fellowship,

Agustin Rodriguez.

Conclusions
Although our screening is in the preliminary stages, our results suggest

that the purification of P3-TRCP is possible and provide a useful reagent to screen
chemical libraries.

References

N/A
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1. Schneekloth JS, Fonseco F, Koldobskiy M, Mandal A, Deshaies RJ,
Sakamoto KM, CM Crews. Chemical Genetic Control of Protein Levels:
Selective in vivo Targeted Degradation. J Amer Chem Soc, 126(12); 3748-3754,
2004.

2. Verma R, Peters NR, Tochtrop G, Sakamoto KM, D'Onofrio, Varada R,
Fushman D, Deshaies RJ, and RW King. Ubistatins, a Novel Class of Small
Molecules that inhibit Ubiquitin-Dependent Proteolysis by Binding to the Ubiquitin
Chain. Science, 306:117-120, 2004.
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press.

4. Curriculum Vitae

Supportingq data
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Abstract: Genetic loss of function analysis is a powerful method for the study of protein function. However,
some cell biological questions are difficult to address using traditional genetic strategies often due to the
lack of appropriate genetic model systems. Here, we present a general strategy for the design and syntheses
of molecules capable of inducing the degradation of selected proteins in vivo via the ubiquitin-proteasome
pathway. Western blot and fluorometric analyses indicated the loss of two different targets: green fluorescent
protein (GFP) fused with FK506 binding protein (FKBP12) and GFP fused with the androgen receptor
(AR), after treatment with PROteolysis TArgeting Chimeric moleculeS (PROTACS) incorporating a FKBP12
ligand and dihydrotestosterone, respectively. These are the first in vivo examples of direct small molecule-
induced recruitment of target proteins to the proteasome for degradation upon addition to cultured cells.
Moreover, PROTAC-mediated protein degradation offers a general strategy to create "chemical knockouts,"
thus opening new possibilities for the control of protein function.

Introduction been few attempts to design small molecules which induce the

The selective loss of critical cellular proteins and subsequent destruction (rather than inhibition) of a targeted protein in an

analysis of the resulting phenotypes have proven to be extremely otherwise healthy cell. Access to such reagents would provide
useful in genetic studies of in vivo protein function. In recent a chemical genetic alternative to the traditional ways of inter-years, genetically modified knockout cell lines and animals have fering with protein function, resulting in "chemical knockouts".
allowed biological research to advance with unprecedented Importantly, a small molecule capable of inducing this processalloed iolgicl rseach o adanc wih upreedeted could do so without any genetic manipulation of the organism,speed. Chemical genetic approaches, using small molecules to coldoswihuangetcmnpltonfteorns,ineeduChemichangeseincll pphenotpes, areng cmpllmolementr to t thus allowing one to target proteins that are not readily accessiblein du ce ch an g es in cell p h en otyp e, are com p lem entary to tra- b y t a i i n l g eic m ns( e . g n s e s n i l fo p r i e ai n
ditional genetics. Many chemical genetic strategies use knowl- by traditional genetic means (i.e., genes essential for proliferation
edge gained from natural product mode of action studies,1- 3  and early development).

while others employ chemical inducers of dimerization to ma- Protein expression can be described as occurring on three

nipulate intracellular processes.4-7 To date, however, there have levels: DNA, RNA, and post-translation. Consequently, inter-
ference with protein function may be approached from each of

t Department of Cheniistry, Yale University. these levels. Genetic knockouts disrupt protein function at the
t Department of Molecular, Cellular, and Developmental Biology, Yale DNA level by directly inactivating the gene responsible for a

University.
Division of Biology, California Institute of Technology. protein product. On the RNA level, removal of a protein of
Howard Hughes Medical Institute, California Institute of Technology. interest may be accomplished by RNA interference (RNAi).

± Department of Pediatrics and Pathology, Mattel Children's Hospital. RNAi causes the degradation of mRNA within the cell, pre-
Department of Pharmacology, Yale University.

(1) Harding, M. W.; Galat, A.; Uehling, D. E.; Schreiber, S. L. Nature 1989, venting the synthesis of a protein, and often resulting in a
341, 758-60. "knockdown" or total knockout of protein levels. Interference

(2) Sin, N.; Meng, L.; Wang, M. Q. W.; Wen, J. J.; Bornmrann W. G.; Crews,
C. M. Proc. Natl. Acad ScL U.S.A. 1997, 94, 6099-6103. with gene products at the post-translational level would involve

(3) Kwok, B. H. B.; Koh, B.; Ndubuisi, M. I.; Elofsson, M.; Crews, C. M. degradation of the protein after it has been completely expressed.
Chem. Biol. 2001, 14, 1-8.

(4) Spencer, D. M.; Wandless, T. J.; Schreiber, S. L.; Crabtree, G. R. Science To date, interference with proteins on the post-translation level
1993, 262, 1019-1024. is the least explored.

(5) Belshaw, P. J.; Ho, S. N.; Crabtree, G. R.; Schreiber, S. L. Proc. Nat.
Acad ScL U.S.A. 1996, 93, 4604-4607. In principle, targeted proteolytic degradation could be an

(6) Lin, H.; Abdia, W. M.; Sauer, R. T.; Cornish, V. W. J Am. Chem. Soc. effective way to accomplish the removal of a desired gene
2000, 122, 4247-4248.

(7) Lin, H.; Cornish, V. W. Angew. Chem., Int. Ed. 2001, 40, 871-875. product at the post-translational level. Given the central role of
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the ubiquitin-proteasome pathway in protein degradation within
the cells reagents capable of redirecting the substrate specificity
of this pathway would be useful as experimental tools for
modulating cellular phenotype and potentially act as drugs for PROTAC
inducing the elimination of disease-promoting proteins. We E I*
present here a general strategy for designing molecules capable
of inducing the proteolysis of a targeted protein via the ubi-
quitin-proteasome pathway, as well as the first evidence that
such molecules are effective upon addition to living cells.

Protein degradation, like protein synthesis, is an essential part
of normal cellular homeostasis. As the major protein degradation 0 Proteolysis
pathway, the ATP-dependent ubiquitin-proteasome pathway [- [ 0
has been implicated in the regulation of cellular processes as D
diverse as cell cycle progression,9 antigen presentation,' 0 the Figure 1. Targeted proteolysis using a PROTACGmolecule. Ub = ubiquitin,

inflammatory response," transcription,' 2 and signal transduc- target = target protein, E3 = E3 ubiquitin ligase complex, and E2 = E2

tion.13 The pathway involves two discrete steps: (i) the specific ubiquitin transfer enzyme.
tagging of the protein to be degraded with a polyubiquitin chain
and (ii) the subsequent degradation of the tagged substrate by cellular lysate upon the addition of a PROTAC (referred to as
the 26S proteasome, a multicatalytic protease complex. Ubi- PROTAC-1) consisting of the known MetAP-2 ligand, ovalicin,

quitin, a highly conserved 76 amino acid protein,14 is conjugated joined to a peptide ligand for the ubiquitin ligase complex
to the target protein by a three-part process. First, the C-terminal SCFPT"CP. By bridging MetAP-2 and an E3 ligase, PROTAC-1
carboxyl group of ubiquitin is activated by a ubiquitin-activating initiated the ubiquitination and proteasome-mediated degradation

enzyme (El). The thioester formed by attachment of ubiquitin of MetAP-2 (Figure 1). We have also recently shown that an
to the El enzyme is then transferred via a transacylation reaction estradiol-based PROTAC (PROTAC-2) could promote the

to an ubiquitin-conjugating enzyme (E2). Finally, ubiquitin is ubiquitination of the human estrogen receptor (hERct) in vitro.
transferred to a lysine (or, less commonly, the amino terminus) Furthermore, a dihydrotestosterone (DHT)-based PROTAC

of the protein substrate that is specifically bound by an ubiquitin (PROTAC-3), when microinjected into cells, was capable of

ligase (E3).is Successive conjugation of ubiquitin to internal inducing the degradation of the androgen receptor. 20 Encouraged
lysines of previously added ubiquitin molecules leads to the by our success with PROTACS-1, -2, and -3, we next directed
formation of polyubiquitin chains.' 6 The resulting polyubi- our efforts toward the design of molecules capable of inducing
quitinated target protein is then recognized by the 26S protea- proteolysis simply upon addition to cells. Additionally, the
some, whereupon ubiquitin is cleaved off and the substrate design of new PROTACS takes into account the desire to mini-
protein threaded into the proteolytic chamber of the proteasome. mize the amount of molecular biological manipulations neces-
Importantly, substrate specificity of the ubiquitin-proteasome sary to effect degradation to perturb the system as little as pos-
pathway is conferred by the E3 ligases. Each E3 ligase or sible outside the desired degradation.

recognition subunit of a multiprotein E3 ligase complex binds Results
specifically to a limited number of protein targets sharing a
particular destruction sequence. The destruction sequence may Development of a Cell Permeable PROTAC: PROTAC-

require chemical or conformational modification (e.g., phos- 4. For the design of PROTAC-4, we used a protein target/ligand

phorylation) for recognition by E3 enzymes. 17.18 pair developed by ARIAD Pharmaceuticals. The F36V mutation
Recently, we demonstrated a strategy for inducing the ubi- of FK506 binding protein (FKBP12) generates a "hole" into

quitination and ensuing proteolytic degradation of a targeted which the artificial ligand AP21998 (1) fits via a hydrophobic
protein in vitro. This approach uses heterobifunctional mole- "bump," thus conferring specificity of this particular ligand to
cules known as PROtpolysis TArgeting Chimeric moleculeS the mutant FKB.P over the wild-type protein. 21t 22 Inclusion of

cule knwn s PRteoysi T~retig Cimerc mlecleS AP2 1998 as one domain of PROTAC-4 thus allows it to target
(PROTACS), which comprise a ligand for the target protein, a AP2199 I pron e in ort ally th out disrget

linker moiety, and a ligand for an E3 ubiquitin ligase.' 9 In that (F36V)FKBPl2 proteins orthogonally, without disrupting en-
proof of principle experiment the degradation of a stable protein, dogenous FKBP12 function. Given the lack of small-moleculeprooffpinciple experimen the degradatin owas sled prin, a E3 ubiquitin ligase ligands, the seven amino acid sequence
methionine aminopeptidase 2 (MetAP-2), was induced in a AAYPwscoe o h 3rcgiindmi.Ti

ALAPYIP was chosen for the E3 recognition domain. This

(8) Myung, J.; Kim, K.; Crews, C. M. Med. Res. Rev. 2001, 21, 245-273. sequence has been shown to be the minimum recognition
(9) Koepp, D. M.; Harper, J. W.; Elledge, S. J. Cell 1999, 97, 431-434. domain for the von Hippel-Lindau tumor suppressor protein

(10) Rock, K. L.; Goldberg, A. L. Annu. Rev. hnrmunol. 1995, 17, 739-779. (VHL),2 3 part of the VBC-Cul2 E3 ubiquitin ligase complex.
(11) Ben-Neriah, Y. Nat. Inimunol. 2002, 3, 20-26.
(12) Muratani, M.; Tansey, W. P. Nat. Rev. MAo. Cell Biol. 2003, 4, 192-201. Under normoxic conditions, a proline hydroxylase catalyzes the
(13) Hershko, A.; Ciechanover, A. Annu. Rev. Biochem. 1998, 67, 425-479. hydroxylation ofhypoxia inducible factor loa (HIFla) at P56424

(14) Vijay-Kumar, S.; Bugg, C. E.; Wilkinson, K. D.; Vierstra, R. D.; Hatfield,
P. M.; Cook, W. J. J. Biol. Chem. 1987, 262, 6396-6399.

(15) Breitschopf, K.; Bengal, E.; Ziv, T.; Admon, A.; Ciechanover, A. EAIBO (20) Sakamoto, K.; Kim, K. B.; Verma, R.; Rasniek, A.; Stein, B.; Crews, C.
J. 1998, 17, 5964-5973. M.; Deshaies, R. J. Mot. Cell. Proteomics 2003, 2, 1350-1358.

(16) Pickart, C. M. Annu. Rev. Biochem. 2001, 3, 503-533. (21) Yang, W.; Roxanmus, L. W.; Nanila, S.; Rollins, C. T.; Yuan, R.; Andrade,
(17) Yaron, A.; Hatzubal, A.; Davis, M.; Lavon, I.; Amit, S.; Manning, A. M.; L. J.; Ram, M. K.; Phillips, T. B.; van Schravendijk, M. R.; Dalgamo, D.;

Andersen, J. S.; Mann, M.; Mercurio, F.; Ben-Neriah, Y. Nature 1998, Clackson, T.; Holt, D. J. Med. Chem. 2000, 43, 1135-1142.
396, 590-594. (22) Rollins, C. T.; Rivera, V. M.; Woolfson, D. N.; Keenan, T.; Hatada, M.;

(18) Crews, C. M. Curr. Opin. Chem. Biol. 2003, 7, 534-539. Adams, S. E.; Andrade, L. J.; Yaeger, D.; van Schravendijk, M. R.; Holt,
(19) Sakamoto, K. M.; Kim, K. B.; Kumagai, A.; Mercurio, F.; Crews, C. M.; D. A.; Gilhan, M.; Clackson, T. Proc. Nati. Acad. Sci. U.S.A. 2000, 97,

Deshaies, R. J. Proc. Natl. Acad Sci. U.S.A. 2001, 98, 8554-8559. 7096-7101.
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A R T I C L E S Schneekloth et al.

Scheme 1. Synthesis of the AP21998/HIF1 CL-Based PROTACa
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3 1 0,
(i) H2N(CH2)sCO 2Bn, EDCI, DMAP. (ii) H 2, Pd/C. (iii) H 2N(CH 2)5CONH-ALAPYIP-(D-Arg)g-NH 2, PyBrOP, DIPEA, DMF.

(the central proline in the ALAPYIP sequence), resulting in arninocaproic acid followed by removal of the benzyl group
recognition and polyubiquitination by VHL. HIFlca is thus afforded 2 in 85% crude yield after two steps. It is important to
constitutively ubiquitinated and degraded under normoxic con- note that although this material was carried through as a mixture
ditions. 25,26 Finally, a poly-D-arginine tag was included on the of two diastereomers at C9, each diastereomer has previously
carboxy terminus of the peptide sequence to confer cell per- been shown to bind to the target.22 Standard peptide coupling
meability and resist nonspecific proteolysis. Polyarginine se- conditions were used to label the peptide sequence. HPLC
quences fused to proteins have been shown to facilitate trans- purification yielded 3 (PROTAC-4) with 17% recovery from 1
location into cells2 7,28 via a mechanism that mimics that of the (Scheme 1).
Antennapedia 29 and HIV Tat proteins. 30 Because a molecule To monitor the abundance of the targeted protein, a vector
fused to the polyarginine sequence should in principle be cell' capable of expressing the mutant FKBP12 fused to enhanced
permeable, the necessity of PROTAC microinjection is circum- green fluorescent protein (EGFP) was generated. In this way,
vented. This design element also allows greater flexibility in proteolysis of FKBP12 could be monitored by loss of intrac-
the types of ligands that could be used in future PROTACs, ellular fluorescence. This vector was then used to generate a
since polarity of the compound is no longer an issue for HeLa cell line stably expressing the EGFP-(F36V)FKBP12.
membrane permeability. It was hypothesized that PROTAC-4 Bright field and fluorescent photographs of the cells were taken
would enter the cell, be recognized and hydroxylated by a prolyl before and 2.5 h after treatment with PROTAC-4 (3). As shown
hydroxylase, and subsequently be bound by both the VHL E3 in Figure 2A-D, EGFP-FKBP12 was retained in those cells
ligase and the mutant FKBP12 target protein. PROTAC treated with DMSO, but lost in cells treated with 25 uM
mediated recruitment of FKBP12 to the VBC-Cul2 E3 ligase PROTAC-4 for 2.5 h. Western blot analysis of cells treated with
complex would be predicted to induce FKBP12 ubiquitination PROTAC-4 also indicated loss of EGFP-FKBP12 relative to
and degradation as in Figure 1. an equal number of cells treated with DMSO (Figure 21). As a

The F36V FKBP12 ligand AP21998 (1) was synthesized as control, cells were treated with uncoupled I and the HIF-
previously described,21,2- as an approximately 1:1 mixture of polyarginine peptide fragment (Figure 2E,F). These cells re-
diastereomers at C9. Treatment of I with the benzyl ester of tained fluorescence, indicating that the two domains require a

chemical bond to each other to exert a biological effect. To
(23) Hon, W.; Wilson, M. I.; Harlos, K.; Claridge, T. D. W.; Schofield, C. J.; investigate whether VHL was required for PROTAC-4-mediated

Pugh, C. W.; Mazwell, P. H.; Ratcliffe, P. J.; Stuart, D. 1.; Jones, E. Y.
Nature 2002, 417, 975-978. EGFP-FKBP12 degradation, the renal carcinoma cell line 786-

(24) Epstein, A. C.; Gleadle, J. M.; McNeill, L. A.; Heritson, K. S.; O'Rourke, 031 was used. 786-0 cells failed to produce VI-IL protein and
J.; Mole, D. R.; Mukherji, M.; Metzen, E.; Wilson, M. L.; Dhanda, A.;
Tian, Y. M.; Masson, M.; Hamilton, D. L.; Jaakkola, P.; Barstead, R.; thus lack a functional VBC-Cul2 E3 ligase complex. 786-0
Hodgkin, J.; Mazwell, P. H.; Pugh, C. W.; Schofield, C. J.; Ratcliffe, P. J. cells stably expressing the degradation substrate EGFP-
Cell 2001, 107, 43-54.

(25) Ohh, M.; Park, C. W.; Ivan, M.; Hoffmann, M. A.; Kim, T. Y.; Huang, L. FKBP12 retained fluorescence despite treatment with 25 uM
E.; Pavletich, N.; Chau, V.; Kaelin, W. G. Nat. Cell Biol. 2000, 2, 423- PROTAC-4 for 2.5 h (Figure 2G,H), confirming that the E3
427.

(26) Tanimoto, K.; Makino, Y.; Pereira, T.; Poellinger, L. EMBO J. 2000. 19, ligase is required for PROTAC-4 activity. Finally, similar cell
4298-4309. density and morphology in bright field images before (Figure

(27) Wender, P. A.; Mitchell, D. J.; Pattabiraman, K.; Pelkey, E. T.; Steinman,
L.; Rothbard, J. B. Proc. Nall. Acad. Sci. U.S.A. 2000, 97, 13003-13008. 21) and after (Figure 2J) treatment with 25 uM PROTAC-4 for

(28) Kirschberg, T. A.; VanDeusen, C. L.; Rothbard, J. B.; Yang, M.; Wender,
P. A. Org. Lett. 2003, 5, 3459-3462.

(29) Derossi, D.; Joliot, A. H.; Chassaing, G.; Prochiants, A. J. Biol. Chem. (31) Baba, M.; Hirai, S.; Yamada-Okabe, H.; Hamada, K.; Tabuchi, H.;
1994, 269, 10444-10450. Kobayashi, K.; Kondo, K.; Yoshida, M.; Yamashita, A.; Kishada, T.;

(30) Fawell, S.; Seery, J.; Daikh, Y.; Moore, C.; Chen, L. L.; Pepinsky, B.; Nakaigawa, N.; Nagashima, Y.; Kubota, Y.; Yao, M.; Ohno, S. Oncogene
Barsoum, J. Proc. Nail. Acad. Se. U.S.A. 1994, 91, 664-668. 2003, 22, 2728-2738.
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Scheme 2. Synthesis of a DHT/HIF1 (i-Based PROTAC
(PROTAC-3)a

0
OH

H ~0 1

FH
0 -

H
4 0

H 0 H N0
"H NH ALAPYIP-(D-Arg)s

0 0H

5
(i) H2N(CH2)sCONH-ALAPYIP-(D-Arg)s-NH2, EDCI, DMAP, DMF.

intracellular protein degradation, we next used a well understood
protein-ligand pair which occurs in nature. The testosterone/
androgen receptor pair was particularly attractive because it has
been shown that the androgen receptor (AR) can promote the
growth of prostate tumor cells, even in some androgen-
independent cell lines.3 2 In those same cell lines, it has been
shown that inhibition of AR represses growth.3 2 We hypoth-
esized that a PROTAC could be utilized to degrade AR, poten-
tially yielding a novel strategy to repress tumor growth. With
this in mind, the design of PROTAC-5, 5, contains DHT as the
ligand for AR as well as the HIF-polyarginine peptide sequence
which was successful with PROTAC-4. Known DHT derivative
433 was successfully coupled to the HIF-polyarginine peptide
with standard peptide coupling conditions (Scheme 2). To
monitor protein degradation by fluorescence analysis, HEK293
cells stably expressing GFP-AR (2 9 3GFP-AR) were treated with
increasing concentrations of PROTAC-5. Within I h, a signifi-
cant decrease in GFP-AR signal was observed in cells treated
with 100, 50, and 25 uM PROTAC-5, but not in the DMSO
control (Figure 3, parts A-F, 1, L). Western blot analysis with
anti-AR antisera verified the downregulation of GFP-AR in cells
treated with 25,uM PROTAC-5 compared to DMSO control or
nontreated cells (Figure 3M). PROTAC-5 concentrations lower

K DMSO PROTAC-4 than 25 ,uM did not result in GFP-AR degradation (data not
EGFP-FKBP12 shown). Pretreatment of cells with epoxomicin, a specific

(F36V) proteasome inhibitor,34 prevented degradation of GFP-AR (Fig-

- VHL ure 3, part H: light field, K: fluorescent), indicating that the
observed degradation was proteasome-dependent. This result
was also verified by Western blot (Figure 3N). It should be

Figure 2. PROTAC-4 (3) mediates EGFP-FKBP degradation in a VI-L- noted that decreased cell density in the epoxomicin experiments

dependent manner. No change in fluorescence is observed before (A) and

2.5 h after (B) treatment in DMSO control, while a significant change is are most likely due to the inherent toxicity of epoxomicin itself,
observed between before (C) and 2.5 h after (D) treatment with 25 uM 3. rather than from a toxic effect of the PROTAC. This is supported
Cells treated with 25 uM 1 and 25 ,M HIF-(D-Arg)s peptide show no by the viability of cells treated with PROTAC-5, as seen in
difference before (E) and 2.5 h after (F) treatment. 7 86-OEGFP-F'BP cells
do not lose fluorescence before (G) or 2.5 h after (H) treatment with 25 Figure 3B,C.

,uM 3. Bright field images of cells before (I) and 2.5 h after (J) treatment Competition experiments with testosterone also inhibited
with 25 pM I affirmn constant cell density and morphology. Western blot PROTAC-5 from inducing GFP-AR degradation (Figure 4 A-D).
analysis (K) with monoclonal anti-GFP antibodies confirms loss of EGFP- In addition, cells treated only with testosterone retained all
FKBP in cells treated with 25 uM 3 (PROTAC-4) for 2.5 h compared to
an equal load from vehicle (DMSO) treated cells, fluorescence, as did cells treated with the HIF-polyarginine

peptide (Figure 4G,H). Finally, cells treated with both testoster-
2.5 h confirm that cells are capable of surviving treatment with

5 hRonrmotelulsre. (32) Debes, J. D.; Schmidt, L. J.; Huang, H.; Tindall, D. J. Cancer Res. 2002,
a PROTAC molecule. 62, 5632-5636.

Implementation of a DHT-Based PROTAC: PROTAC- (33) Stobaugh, M. E.; Blickenstaff, R. Steroids 1990, 55, 259-262.
(34) Meng, L.; Mohan, R.; Kwok, B. H. K.; Elofsson, M.; Sin, N.; Crews, C.

5. To test the robustness of this approach for the induction of M. Proc. Nat!. Acad. Sci. U.S.A. 1999, 96, 10403-10408.

J. AM. CHEM. SOC. v VOL. 126, NO. 12, 2004 3751



A R T I C L E S Schneekloth et al.

+PT DMSO None

M - GFP-AR

- f3-tubulln

293
par 293,Fn

Epox
DMSO Epox PT PT

N - GFP-AR Figure 4. A chemical bond between the HIF-(D-Arg)s peptide and DHT

is required for PROTAC-5-induced degradation of GFP-AR. Cells were
fRtubulln treated with (A) no treatment, (B) DMSO (equal volume), (C) 25 11M

PROTAC-3, (D) 25 jtM PROTAC-5 + 10-fold molar excess testosterone,
(E) 25 juM PROTAC-5 + 10-fold molar excess (250 uM) HIF-D-Arg

Figure 3. DHT-H]F PROTAC-5 (5) mediates GFP-AR degradation in a peptide, (F) 25 ,M HIF-D-Arg peptide + 25 1 sM testosterone added
proteasome-dependent manner. One hour after treatment, 2 9 3PP-AR cells separately, (G) 25 pM DHT, and (H) 25 pM HIF-D-Arg peptide.
treated with a 100 yM (B light field, E fluorescent) or 50 'uM (C light
field, F fluorescent) concentration of 5 lose fluorescence, while the DMSO
control (A light field, D fluorescent) retains fluorescence. Cells treated with provides a novel approach to the study of protein function
10,uM epoxomicin (G light field, J fluorescent) and pretreated with 10 piM without genetically modifying the host cell. Moreover, the
epoxomicin for 4 h followed by treatment with 25 pM 5 for 1 h (H light modularity of the PROTAC design offers the possibility to
field, K fluorescent) retain fluorescence, while cells treated only with 25 synthesize similar PROTAC molecules targeting a variety of
#M 5 lose fluorescence after I h (I light field, L fluorescent). Western blot
analysis confirms loss of GFP-AR after treatment with PROTAC 5 (+PT) intracellular targets. These experiments have shown that the
relative to a loading control (M), while inhibition of the proteasome with ligand for the target protein can be varied using both natural
epoxomicin (Epox) inhibits degradation (N). and synthetic ligands to degrade effectively targeted GFP fusion

one and the HIF-polyarginine peptide together also retained proteins. Although the linker length has not been fully explored,
a spacer consisting of two aminocaproic acids (12 atoms) hasfluorescence, indicating again that both domains needed to be been shown to be flexible enough to accommodate some

chemically linked to observe degradation (Figure 4F). It is be hw ob lxbeeog oacmoaesm
chmicrtalinke to observgainthate deg sradation d (F rea4 It wish structural variation in the target and E3 ligase proteins yet remain
important to note again that the cells survived treatment with ftnctional. Since ubiquitination occurs most COlmmonly on an
PROTAC-5, indicating that the strategy of utilizing the ubi- exodlyiedfernspcregtsmybrquedo

quitin-proteasome pathway for targeted degradation does not accommdate theructusofierent targe reins.
necesarly aus a txiceffct.accommodate the structures of different target proteins.

necessarily cause a toxic effect. Small molecules have previously been implicated in inducing

Discussion ubiquitination and degradation of proteins; most notably geldan-
amycin derivatives act by controlling target interaction withThese experiments highlight the general applicability of a molecular chaperones. 3S-38 However, ther~e are often specificity

novel strategy to target and degrade proteins in vivo. A lthough issues w h th ese appr o wever, the exact m ec ismc of

this technique has been shown to be effective previously in vitro,
this is the first example of synthesized molecules which are (35) Kuduk, S. D.; Zheng, F. F.; Sepp-Lorenzino, L.; Rosen, N.; Danishefsky,
capable of inducing the degradation of a targeted protein upon S. J. Bioorg. Med. Chem. Lett. 1999, 9, 1233-1238.

(36) Kuduk, S. D.; Harris, C. R.; Zheng, F. F.; Sepp-Lorenzino, L.; Ouerfelli,
addition to cells. Use of a GFP fusion protein provided a Q.; Rosen, N.; Danishefsky, S. J. Bioorg. Med Chem. Lett. 2000, 10, 1303-
convenient method to monitor PROTAC-induced degradation, 1306.

(37) Zheng, F. F.; Kuduk, S. D.; Chiosis, G.; Minster, P. N.; Sepp-Lorenzino,
but is not inherently necessaty to the design of the molecule. L.; Danishefsky, S. J.; Rosen, N. Cancer Res. 2000, 60, 2090-2094.
In principle, no molecular biological manipulations are needed (38) Citri, A.; Alroy, L.; Lavi, S.; Rubin, C.; Xu, W.; Grammatikakis, N.;

Patterson, C.; Neckers, L.; Fry, D. W.; Yarden, Y. EMBO J. 2002, 2407-
to implement a PROTAC molecule. This technique therefore 2417.
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detection of the desired cellular phenotype (e.g., inhibition of
pro-inflammatory signaling), one could identify the protein that

"'O] O000000 was degraded by incubation with the PROTAC. A number of
00000 0000 approaches could be used to identify the PROTAC-targeted
00000 0000 protein, including affinity chromatography and differential
0 00 00000 proteomic technologies such as ICAT.40 In a modification of

k 0 0)00 00000Q this strategy, a library of PROTACS could be screened to
identify a ligand for a particular target by monitoring degradation

Sof the target protein (e.g., loss of GFP fusion protein). Finally,
Constnict library of PROTACS with efPROTACS could be used as drugs to remove toxic or disease-

dirsifid targe t igavt~s "[effect causing proteins. This strategy is particularly appealing since
many diseases, including several cancers, are dependent on the
presence or overexpression of a small number of proteins. The

000000000 large number of potential uses for this technology, coupled with
Idenrify protei degraded 000000000 the success of these experiments, suggests that PROTACS could

by PROTAC 000060000 find broad use in the fields of cell biology, biochemistry, and

0000000000 00000000 potentially medicine.

Experimental Section
Figure 5. Potential use of PROTACS in a chemical genetic screen.

A. Materials. (F36V)FKBP12 expression vector was generously
provided by ARIAD Pharmaceuticals (Cambridge, MA), and GFP-ARinduced degradation is not clear. Interference with gene products expression plasmid was a gift from Dr. Charles Sawyers (HHMI,

at the post-translational level has also been successfully UCLA). Epoxomicin4 , and AP2199821 ,22 were synthesized as previously
demonstrated by Howley and co-workers, 39 who used known described. Dihydrotestosterone and testosterone were obtained from
protein-protein interacting domains. Their approach, while Sigma-Aldrich (St. Louis, MO). Monoclonal antibody recognizing VHtL
successful, required significant manipulation of the cell lines was purchased from Oncogene (San Diego, CA), antibodies recognizing
in question to observe an effect. Both of these methods are GFP and fl-tubulin were obtained from Santa Cruz Biotech (Santa Cruz,
significantly less direct and flexible than PROTACS. In addition, CA), and polyclonal antibody against the androgen receptor was from
the PROTAC strategy represents the first attempt to develop a United Biomedical, Inc. (Hauppauge, NY). HEK293, 786-0, and HeLa
general method for small molecule-induced targeted proteolysis cells were purchased from the American Type Culture Collection
via the ubiquitin-proteasome pathway in intact cells. (Manassas, VA). Tissue culture medium and reagents were obtained

from GIBCO-Invitrogen (Carlsbad, CA).
PROTACS could in principle be used to target almost any B. Tissue Culture. HeLa cells, 786-0 cells, and HEK 293 cells

protein within a cell and selectively initiate its degradation, were separately cultured in D-MEM supplemented with 10% fetal
resulting in a "chemical knockout" of protein function. A notable bovine senim, 100 units/mL penicillin, 100 mg/mL streptomycin, and
advantage to this strategy is that proteolysis is not dependent 2 mM L-glutamine. All cell lines were maintained at a temperature of
on the active-site inhibition of the target; any unique site of a 37 'C in a humidified atmosphere of 5% CO2 . To generate cells stably
protein may be targeted, provided that there are exposed lysines expressing a particular fluorescent target protein, the parent cell line
within proximity for the attachment of ubiquitin. Because some was grown to 70% confluency and transfected using calcium phosphate
E3 ligases are expressed in a tissue-specific manner, this also precipitation of the designated cDNA. Following transfection, cells were
raises the possibility that PROTACS could be used as tissue- split 1:10 into culture medium supplemented with 600 ug/mL G418

specific drugs. (GIBCO-Invitrogen). Individual clones which optimally expressed
fluorescent target protein were identified and expanded under selection

Several other applications for this technology can be envi- for further experimentation.
sioned. First, PROTACS could be used to control a desired C. Detection of PROTAC-Induced Degradation by Fluorescence
cellular phenotype, for example, via the induced degradation Microscopy. Cells stably expressing fluorescent target protein were
of a crncial regulatory transcription factor which is difficult to plated into 96 well plates (HeLaEoFP-FKnBP cells plated at 4000 cells/
target pharmaceutically. "Chemical knockout" of a protein could well and HEK2936FP-AR cells plated at 60 000-100 000 cells/well).
prove viable as an alternative for a genetic knockout, which Synthesized PROTACS were dissolved in DMSO vehicle at a final
would be extremely valuable in the study of protein function, concentration of 1%. Disappearance of target protein in vivo was
This strategy could also provide significantly more temporal monitored by fluorescence microscopy at an excitation wavelength of
or dosing control than gene inactivation at the DNA or RNA 488 nm.
level. Second, libraries of PROTACS could be used to screen D. Detection of PROTAC-Induced Degradation by Western Blot.

for phenotypic effects in a chemical genetic fashion. This Whole cell lysates were prepared from HeLaEGFP-FKBP cells treated
strategy could be used either to identify novel ligands for a target with PROTAC-4 and with IIEK293GFP-AR cells treated withPRTOAC-5 by lysing the cells in hot Laemmli buffer. Lysates were
or to identify new therapeutically vulnerable protein targets by subjected to 8% polyacrylamide gel electrophoresis, and the proteins
studying phenotypic change as a result of selective protein were transferred to nitrocellulose membrane. Membranes were blocked
degradation (Figure 5). This chemical genetic strategy would in 3% nonfat milk in TBS supplemented with 0.1% Triton X-100 and
employ a library of PROTAC molecules with identical E3 0.02% sodium azide. Lysates from HeLaSFP-FKBP cells treated with
ubiquitin ligase domains but chemically diverse target ligands.
After PROTAC library incubation with cultured cells and (40) Han D. K.; Eng J.; Zhou, H.; Aebersold, R. Nat BiotechnooL 2001, 19, 946-

951.
(41) Sin, N.; Kim, K. B.; Elofsson, M.; Meng, L.; Auth, H.; Kwok, B. H. B.;

(39) Zhou, P.; Howley, P. Mot. Cell. 2000, 6, 751-756. Crews, C. M. Bioorg. Med. Chem. Lett. 1999, 9, 2283-2288.
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PROTAC-4 were probed with anti-GFP (1:1000) and anti-VHL (1: CaPCURE (R.J.D., C.M.C., and K.M.S.), Department of
1000) antibodies, and HEK293GFP-AR cells treated with PROTAC-5 Defense (DAMD17-03-1-0220 to K.M.S.), UC BioSTAR
were probed with anti-androgen receptor (1:1000) and anti-/3-tubulin Project (01-10232 to K.M.S.), Stein-Oppenheimer Award
(1:200) antibodies. Blots were developed using chemiluminescent (K.M.S.), and the Susan G. Komen Breast Cancer Foundation
detection. (DISS0201703 to R.J.D.). R.J.D. is an Assistant Investigator
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834 eVgrIA AX APPLICANT TP CtI'flLOOGI5 f5,41

and cell cyclergr.sin A tec.hnology wta dieveloped known as Protarc
(Proleolysis Targeting C'himeric Molecule) that acts. as a bridge, tringing,
togethe'r the SCF uhiquitin ligase with a protein tatget, resut fing in its
ubiquitination and degradation.rl T-he Protac Contains an SCF-binding
peptide moiety at one, end that is recoguized by SGF that is chemically
linked ito the binding paxrtner or ligand of the target protent The first
demonstration of the efficacy of V'rotac technology was tht i resu
recruitment, ubiquixination, and degradation of the proteihr nithioninec
arniinopepxidase-2 (MetAP-2) through a covalent inkeo)Ctiol betweeýn
MeIAP-2 and- Prowc Subsequently, we demonstrated that Prioracs c1ould
effectively ubiquitinate and degrade cancer-promnoting proZcins (estito en
and androgen reCceptors5) through noncovalent insteractiow, irtn viiro and,, in
cclls. Fit aly, celi-permeable Prowas can Also prom~lel The degradation of
proteins in cells. In this chapter. I describe experimterts to test the Ablily
of Protacs to target proteins in vitro and in cells-.

Introduction S

IMiquitin-depe-ndent prcoreolysiis s miljr atwaiy thatreuas
intracellular protein levels. PoslItranshatiohial modiification- of proteins. by
E33 ubbijuirn lgesresulits in nitld~iftjtitin hi onto n
subs~equent degradation by the 26S ýroteasome (CiechanIlover yr at., 2000;,
Desbalesý 19 99; Sakimraot 2002),. One potential appro~ich to hecating hus-
*man Aiseaseý is to recruit a di46se related protein to ain E3 lii a,. for
ubiquitiina~rin and subsequent d~fadation To this, end, a techinologry
kno; wn as P~rotacs (Prareoly#sf fargeting Chimeric Moleculies,) was ri.v I-
oped. Th'le goal of Protalc thecrixjW is to create a "bidig 1ecl i"tha
could link together a dlisease-rlated protein toan 13 I--e) roascoss

of onensoi y teta PapV, J 6), which is recognie yth 3 1 _.T'
mnoiety or pepride istfc edh emically linked to a binding, partne.r of the
Vtrgutt Th'le idka. is thatWPfotacs; would bring the tage u the ESFg in
close etiough prrolmit1ý for mtdtiubiquitin ttacwhme,:whic vould then
be rcognized by zhta, 6IS protea" me (Fig. I) The advantage of Otisi
approach is tlnflrt catalytic, and thecoreticalfly Can be Used to recru-it ny
prIoteins eveni i~hpsc that. txis tin a multisu~bunit complex.

Seve_1ral barions for Prone-) theriapy aire possible. In cUnluth

Both of th& , brjiorrs of therapy' result in complicationsbcas of effecLts
on, vorm~al fells. Therefore, developmen'-Tt of therap-euticapochso

.... ......i.. .e
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quires mitotic entry, we anticipated that this
U s a nb rscreen would identify compounds that stabi-

lized cyclin B indirectly by blocking mitotic
entry as well as compounds that directly

Dep nde nt inhibited the cyclin proteolysis machinery.
To monitor APC/C activation, we fused theBinding the Ubiquitin Chain destruction-box domain of Xenopus cyclin BI
to luciferase (3) and found that the reporter

Rati Verma,' Noel R. Peters,2 Mariapina D'Onofrio,3  protein was degraded in mitotic but not inter-
Gregory P. Tochtrop,2 Kathleen M. Sakamoto,1"4  phase extracts (fig. Sl). Proteolysis was sen-

Ranjani Varadan, 3 Mingsheng Zhang,5 Philip Coffino,s sitive to inhibitors of cyclin-dependent kinases

W 2* and the ubiquitin-proteasome system but not
David Fushman,3 Raymond J. Deshaies, Randall W.affected by inhibitors of DNA replication or

To identify previously unknown small molecules that inhibit cell cycle machin- spindle assembly, as expected in egg extracts
ery, we performed a chemical genetic screen in Xenopus extracts. One class of lacking exogenous nuclei (4, 5) (fig. S2).
inhibitors, termed ubistatins, blocked cell cycle progression by inhibiting cyclin We developed a miniaturized assay system
B proteolysis and inhibited degradation of ubiquitinated Sic1 by purified pro- (6) and screened 109,113 compounds to
teasomes. Ubistatins blocked the binding of ubiquitinated substrates to the identify 22 inhibitors (Table 1). To distinguish
proteasome by targeting the ubiquitin-ubiquitin interface of Lys48-1inked chains, compounds that blocked mitotic entry from
The same interface is recognized by ubiquitin-chain receptors of the pro- direct inhibitors of proteolysis, we arrested
teasome, indicating that ubistatins act by disrupting a critical protein-protein extracts in mitosis before addition of the
interaction in the ubiquitin-proteasome system. compound and the reporter protein. Sixteen

compounds lost inhibitory activity under these
Unbiased chemical genetic screens can iden- cules that stabilize cyclin B in Xenopus cell conditions (class I, fig. S3), whereas six
tify small molecules that target unknown pro- cycle extracts. Cyclin B degradation regu- compounds (class I, fig. S4) remained inhib-
teins or act through unexpected mechanisms lates exit from mitosis and requires activa- itory. We next activated proteolysis directly in
(1). To identify previously unknown compo- tion of an E3 ubiquitin ligase called the interphase extracts by adding the APC/C
nents or potential drug targets required for anaphase-promoting complex/cyclosome activator Cdhl (Cdc20 homolog 1) (7). Again
cell division, we screened for small mole- (APC/C) (2). Because APC/C activation re- we found that only class II compounds re-

A C
00±M p 10pM 0 9(M f l a t ) . 0 QE Er- N~ "q 16 fl: Ct q 0 0

Compound -L-L C ii: .: - ri :
26S proteasome + Sicl-0. 0" t, :

UbSicl + Epoxomicin

Time (min): 0 0 5

B D
Compound: I I • C92 (Ubistatin A)

OH 0
UbSici 0_ No N L, SQ 0 OHl

SO~H SQ.H H -Nl

C59 (Ubistatin B)

HO.s H OH H

H NTime (min): 0 5 SOH H

Fig. 1. Class lIB compounds inhibit degradation and deubiquitination of proteasomes were preincubated with 100 tM epoxomicin in the pres-
UbSicl by purified 26S proteasomes. (A) Purified 26S proteasomes were ence or absence of 100 lgM test compound. UbSicl was then added and
preincubated in the presence or absence of test compounds. UbSicl was deubiquitination monitored by immunoblotting for Sic1 (3). (C)
then added and assayed for degradation by immunoblotting for Sic1 (3). Titration of C92 in deubiquitination assay. (D) Structures of C92 and
Py mock refers to pyridine in which C23 was dissolved. (B) Purified 26S C59 (ubistatins A and B).
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tained inhibitory activity. We concluded that docked to the 19S regulatory particle by a is concomitantly translocated into the 20S core

class I compounds blocked entry into mitosis multi-Ub chain receptor (13). Proteolysis of particle, where it is degraded. Two class lIB
or APC/C activation, whereas class II com- UbSicl requires removal of the multi-Ub molecules, C92 and C59 (Fig. 1D), strongly
pounds directly blocked components of the chain, catalyzed by the metalloisopeptidase inhibited UbSicl turnover in the reconstituted

cyclin degradation machinery. We next exam- Rpnl 1 (14, 15). The deubiquitinated substrate system (Fig. IA). To address whether these

ined whether the inhibitors could block turn-
over of a J3-catenin reporter protein (8), a
substrate of the SKPI/cullin/F-box protein Table 1. Characterization of compounds in Xenopus extract assays. Results are reported as percent

(SCFP-TRCP, where P3-TRCP is P3-transduction inhibition (percent stimulation). Compounds (200 pM, except C10 and C92, tested at 100 pM) and

repeat-containing protein) ubiquitin ligase cyclin-luciferase (cyc-luc) were added to interphase extracts and then induced to enter mitosis by
addition of nondegradable cyclin B, or extracts were pretreated with nondegradable cyclin B to allow

(Table 1). Three class II compounds (class entry into mitosis before addition of test compound and cyc-luc. Cdhl was added to interphase extracts
JIB) were inhibitory, suggesting these com- before addition of compound and cyc-luc. Interphase extracts were treated with recombinant axin to
pounds inhibited a protein required for the induce turnover of p-catenin-luciferase. Parentheses indicate those values where stimulation, rather than

degradation of both APC/C and SCFP-TRCP inhibition, was observed by addition of compound to the reaction.

substrates. Class IIB compounds did not block
cyclin B ubiquitination or 20S peptidase Addition before additio Cdhl-activated recater
activity (9), indicating they did not inhibit El Compound mitotic entry after interphase extract reporter
or act as conventional proteasome inhibitors. entry__nterphaseextractprotein

To understand how class lIB compounds Class IA
inhibited proteolysis, we turned to a recon- C77 100 4 (12) 0
stituted system using purified 26S proteasomes C58 100 5 (8) 2

and ubiquitinated Sicl (UbSicl) (10). Degra- C82 100 0 0 0
C34 100 0 (8) 6

dation of Sicl requires its ubiquitination by the C62 84 0 (8) 0

ligase SCFcd,4 (11, 12), after which UbSicl is C61 77 8 (8) 2

C13 75 0 (9) 0
C18 73 4 (7) 0

'Department of Biology, Howard Hughes Medical C25 66 3 (6) 0
Institute (HHMI), California Institute of Technology, C54 54 3 (6) 0
Pasadena, CA 91125, USA. 2lnstitute of Chemistry and C67 53 3 (8) 3
Cell Biology and Department of Cell Biology, Harvard C40 42 0 (6) 3
Medical School, 240 Longwood Avenue, Boston, MA Class IB
02115, USA. 3Department of Chemistry and Biochem- C39 100 9 (7) 67
istry, Center for Biomolecular Structure and Orga- C57 100 4 0 60
nization, University of Maryland, College Park, MD C51 100 0 0 30
20742, USA. 4Division of Hematology-Oncology, Cl0 33 0 (4) 21
Mattel Children's Hospital, Jonsson Comprehensive Class IIA
Cancer Center, David Geffen School of Medicine at C1 100 100 35 6
University of California at Los Angeles (UCLA), 10833 C2 80 50 100 0
Le Conte Avenue, Los Angeles, CA 90095, USA. C8 70 63 20 0
SDepartment of Microbiology and Immunology, Uni- Class JiB
versity of California, San Francisco, 513 Parnassus
Avenue, San Francisco, CA 94143-0414, USA. C53 17 100 100 7

C59 97 100 100 70
*To whom correspondence should be addressed. C92 60 22 65 21
E-mail: randy-king@hms.harvard.edu

A B C

92 -- -(5 VIVI + Compound:- 92 -92 1 - 92 - 92 1
Tagged 26S: + + + + +.matrix: S

UbSicl: + - + + C92(5pM): ++ -

UbSicl ft Mu w

analyte: Gst Gst- Gstt- MultlUb2-7
Rpnl0 Red23

Fig. 2. C92 inhibits binding of UbSicl to 265 proteasomes and multi-Ub-chain D

receptors by binding to K48-linked multi-Ub chains. (A) Purified 26S C 0 N 0 N 3 0 N
proteasomes immobilized on anti-Flag beads were incubated with UbSicl in I to € | I , | I I0)
the presence or absence of C92 as described in (3). Beads were then washed
and analyzed by immunoblotting for Sic1. (B) Recombinant Gst-RpnlO and Gst-
Rad23 were immobilized on glutathione sepharose beads and then incubated
with UbSicl in the presence or absence of C92 and analyzed as in (A). (C)
Equivalent amounts of Gst, Gst-fusion protein, or multi-Ub chains were "
incubated with C92 or C1 and analyzed by native gel electrophoresis (28). . .'
(D) C92 and C59 interact specifically with K48-linked Ub on native gels. Ub (16
lMD), K48-Cinked di-Ub (8 pM), or tetra-Ub chains (8 UboM) were preincubated

with a twofold molar excess (mono-Ub and di-Ub) or equivalent amounts __.____:_..
(tetra-Ub) of test compounds before being resolved on native gels as in (C). MonoUbj Di j Tetra Tetra Tetra
Tetra K29Ub, K48Ub, and K63Ub refer to tetraubiquitin chains with ubiquitin K48Ub K29Ub K4OUb K63Ub
linked via K29, K48, or K63. MW refers to molecular weight standards.
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compounds acted upstream or downstream of sustaining its degradation (13). In the absence mobility of the mulhi-Ub chains, but not Gst-
Rpnl 1 isopeptidase, we treated proteasomes of the Ub-binding activities of Rpnl0 and Rpnl0 or Gst-Rad23, was altered by incuba-
with the 20S inhibitor epoxomicin, which Rad23, UbSicl is not recruited, deubiquiti- tion with C92, suggesting that C92 bound Ub
results in Rpnl 1-dependent substrate de- nated, or degraded by purified 26S protea- chains (Fig. 2C). Ubiquitin molecules can be
ubiquitination (14, 16) and accumulation of somes. We thus tested whether C92 could linked to each other in vivo through different
deubiquitinated Sicl within the 20S chamber interfere with binding of UbSicl to recombi- internal lysines, including K29, K48, and
(13). This reaction was completely blocked nant RpnlO and Rad23. C92 abolished bind- K63 (18). The K48-linked chain is the
by C92 (Fig. IB), with a median inhibitory ing of UbSicl to both proteins (Fig. 2B), even principal targeting signal in proteolysis,
concentration (IC5 1) of about 400 nM (Fig. though these receptors use distinct domains whereas K63-linked chains are implicated
1C). C59, which is structurally related to C92. [the Ub-interaction motif (UIM) and the Ub- in enzyme regulation (19). Whereas C92 and
also inhibited denbiquitination of UbSicl (IC5( = associated (UBA) domain, respectively] to C59 efficiently shifted the native gel mobil-
1 ttM), whereas C23 inhibited marginally bind ubiquitin chains (17). C59 also abrogated ity of K48-linked ubiquitin chains, they had
(fig. S5). Thus C92 and C59 potently binding of UbSicl to Rpnl0, whereas other little or no effect on K29- or K63-linked
blocked proteolysis at or upstream of the compounds were without effect (fig. S5). chains (Fig. 2D). Because C92 and C59 bind
essential isopeptidase-dependent step. To distinguish whether C92 inhibited pro- to ubiquitin chains and block interactions

Selective recognition of the multi-Ub chain teolysis by binding to proteasome receptor with proteasome-associated receptors with-
by the 26S proteasome is the first step in proteins or to the Ub chain on Sicl, we ex- out affecting 26S assembly or peptidase
UbSicl degradation (13). C92 strongly inhi- ploited the negative charge of C92 to deter- activity (fig. S6), we refer to these com-
bited binding of UbSicl to purified 26S pro- mine whether compound binding induced a pounds as ubistatin A and B, respectively.
teasomes (Fig. 2A), suggesting that it inhibited mobility shift of the target proteins upon We next tested the ability of ubistatins to
UbSicI turnover by blocking the first step in fractionation on a native polyacrylamide block proteolysis of ornithine decarboxylase
the degradation process. The multi-Ub chain gel. C92 was preincubated with recombinant (ODC), whose degradation does not require
receptor- Rad23 and Rpnl0 serve a redundant Rpnl0, Rad23, or a mixture of Ub chains ubiquitin (20). Whereas a 30-fold molar ex-
role in targeting UbSicl to the proteasome and containing two to seven Ub molecules. The cess of ubistatin A over the substrate strongly

inhibited UbSicl degradation by purified

Fig. 3. Ubistatin A yeast proteasomes (Fig. 1A), a 100-fold molar
binding to K48-ainked A P L o excess of ubistatin A over the substrate had
di-Ub induces site- ' '15 .. . . no effect on degradation of radiolabeled

0.si u n ODC by purified rat proteasomes (fig. S7).
in NMR spectra for .oro 11 ,! Ubistatin B marginally inhibited ODC turn-
both Ub domains. (A) 0.15 ILakbneNlcem1 1o.0 over at this concentration (12%). In contrast,
cal shift perturbation, 0.0 a 20-fold molar excess of cold ODC inhibited

A5, and percent signal 0 o 20 0 40 50 60 70 0 10 20 30 40 0 degradation of labeled ODC by 43% uader
attenuation caused by 100 the same conditions. These data indicate that
ubistatin A binding as No ubistatins at low concentrations preferentially
a function of residue 2 60 inhibit the degradation of ubiquitin-dependent
number for the distal • substrates. Inhibition of ODC turnover by(left) and the proxi-

l t high concentrations of ubistatins, especially
mal (right) domains. L ubistatin B (fig. S7), may reflect either
Ub units are called 0 1 20 .0 40 50 r(o 70 0 l0ay 30 40r0 60 70

"distal" and "proxi- '30 40 Ri n0 nonspecific activity or specific inhibition of
mat" to reflect their a targeting mechanism shared by ubiquitin-
location in the chain dependent and ubiquitin-independent sub-
relative to the free C strates of the proteasome (20).
gterminus (top)hdepictsa On the basis of the selectivity of ubi-

the location of the statin A for binding K48-linked chains and
G76-K48 isopeptide inhibiting the ubiquitin-dependent turnover
bond between the of Sicl but not the ubiquitin-independent
two Ub domains. As- turnover of ODC, we tested the effect of
terisks indicate res- ubistatin A on protein degradation within
idues that showed intact mammalian cells. Because the neg-
significant signal at- 600 t€ 60° atiac chargelin cels. B ec lude d en -
tenuation that could "v ative charge on ubistatin A precluded ef-
not be accurately G76 ficient membrane permeation, we introduced
quantified because of -l~pi t ".ý" the compound into cells by microinjection

signl oerlp. () i~I4 and monitored degradation of an androgen
Mapping of the per- KG L V7 R7 .stý receptor-green fluorescent protein (AR-GFP)
turbed sites on the fusion protein by fltorescence microscopy.
surface of di-Ub. The 14
distal and proximal Microinjection of a synthetic compound (protac,
domains are shown 4 proteolysis-targeting chimeric molecule), which
in surface representa- recruits AR-GFP to SCFP-TRCP, induces rapid
tion and colored blue proteasome-dependent turnover of AR-GFP
and green, respec- Distal Proximal (21). Microinjection of 100 nM ubistatin A
tively; the perturbed into mammalian cells inhibited the Protac-
sites on these domains are colored yellow and red and correspond to residues with A8 > 0.075
parts per million and/or signal attenuation greater than 50%. Numbers indicate surface location of induced degradation of AR-GFP as effi-
the hydrophobic patch and some basic residues along with G76 (distal) and the side chain of K48 ciently as 100 nM epoxomicin (fig. S8),
(proximal). demonstrating that ubistatin A is an effective
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Although there is intense interest in devel-
oping drugs for defined molecular targets, it is and Endocytosis
often difficult to know a priori which proteins
can be most effectively targeted with small Emily A. Partridge,1,3 Christine Le Roy,' Gianni M. Di Guglielmo,1

molecules. Our study demonstrates that chem- Judy Pawling,' Pam Cheung,1 '2 Maria Granovsky,"2 Ivan R. Nabi,4

ical genetic screens in complex biochemical Jeffrey L. Wrana," James W. Dennis' 23*
systems such as Xenopits extracts can identify
small-molecule inhibitors that act through The Golgi enzyme P1,6 N-acetylglucosaminyltransferase V (MgatS) is up-
unexpected mechanisms. Although target iden- regulated in carcinomas and promotes the substitution of N-glycan with poly
tification remains challenging, our work high- N-acetyllactosamine, the preferred ligand for gaLectin-3 (Gal-3). Here, we
lights the value of reconstituted biochemical report that expression of Mgat5 sensitized mouse cells to multiple cytokines.
systems to illuminate the mechanism of action Gal-3 cross-linked MgatS-modified N-glycans on epidermal growth factor and
of inhibitors discovered in unbiased screens. transforming growth factor-P receptors at the cell surface and delayed their
The recent approval of the 20S proteasome removal by constitutive endocytosis. Mgat5 expression in mammary
inhibitor Velcade (Millenium Pharmaceuticals, carcinoma was rate limiting for cytokine signaling and consequently for
Cambridge, MA) for treatment of relapsed epithelial-mesenchymal transition, cell motility, and tumor metastasis. Mgat5
multiple mycloma (27) has suggested that the also promoted cytokine-mediated leukocyte signaling, phagocytosis, and
ubiquitin-proteasome system is an attractive extravasation in vivo. Thus, conditional regulation of N-glycan processing
target for cancer drug development. The iden- drives synchronous modification of cytokine receptors, which balances their
tification of ubistatins indicates that the ubiq- surface retention against loss via endocytosis.
uitin chain itself provides another potential
opportunity for pharmacological intervention Co-translational modification of proteins in bryos is lethal (1, 2). Deficiencies in N-
in this important pathway. the endoplasmic reticulum by N-glycosylation acetylglucosaminyltransferase II and V (Mgat2

facilitates their folding and is essential in and Mgat5) acting downstream of Mgatl
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1541 Chimerlc Molecules to Target Proteins for
Ubiquitination and Degradation

By KA-pt1UEim A SAKAMOTO

Protein degradation is onde of the tactics used by the cell for irreversibly
inactivating proteins. In eukaryotes. ATP-dependent protein degradation
in the cytoplasm afid tficleus is carried out by the 26S proteasome. Most
proteins are tarV164.t4 the 26$ proteasomre by covalent attachment of a
taultiubiquitin IAain. A key Component of the enzyme cascade that results
in attachment oa~tlie multiubiquitin chain to the target or labile protein
is the ubiqultti.lfigase that controls the specificity of the ubiquitinadion
reaction. birctis in ubiquitin-dependein proteolysis hawe b~een shown to
result ino iraitty of human diseases, including cancer, netirodegenerative
diseaseso, nd metabolic disorders.

'The R~ (Skp1lCullin-F-box-Hnil) complex is a heteromeric ubiquitin
ligase that inultiubiquitinates proteins imuportant for signal transduction

14EMlOO V't E ZYMO[MY. VOL 3W
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and cell cycle progression. A technology was developed known as Protac
(Proteolysis Targeting Chimcric Molecule) that acts as a bridge, bringing
together the SCF ubiquitin ligase with a protein target, resulting in its
ubiquitination and degradation. The Protac contains an SCF-binding
peptide moiety at one end that is recognized by SCF that is chemically
linked to the binding partner or ligand of the target protein. The first
demonstration of the efficacy of Protac technology was the Successful
recruitment, ubiquitination, and degradation of the protein rnethionine
arninopeptidase-2 (MetAP-2) through a covalent interaction between
MetAP-2 and Protac. Subsequently, we dernonslrated that Protacs could
effectively ubiquitinate and degrade cancer-promoting proteins (estrogen
and androgen receptors) through noncovalent interactions"in vitro and in
cells. Finally. cell-permeable Protacs can also promote the degradation of
proteins in cells. In this chapter, I describe experiments to test the ability
of Protac:s to target proteins in vitro and in cells.';-

Introduction

Ubiquitin-dependent proteolysis is a fiajbr pathway that regulates
intracellular protein levels. Posttranslational modification of proteins by
E3 ubiquitin ligases results in mnuleh±4uifiin chain formation and
subsequent degradation by the 26S proteasome (Ciechanover er at., 2000;
Desbaies, 1999; Sakamoto, 2002), One potential approach to treating hu-
man disease is to recruit a dis•asc-related protein to an E3 ligase for
ubiquitination and subsequent dLradation. To this end, a technology
known as Protacs (Proteolysl• Targeting Chimeric Molecules) was dvel-
oped. The goal of Protac theAiipy is to create a "bridging molecule" that
could link together a diseaie-reIated protein to an E3 ligase. Protacs consist
of one moiety (e.g., a Lc ), which is recognized by the E3 ligase. This
moiety or peptide is Adeb'khemically linked to a binding partner of the
target The idea is tha'-iotacs would bring the target to the E. ligase in
close enough proxnni? for multiubiquitin attachment, which would then
be recognized by%.,06S proteasome (Fig. 1). The advantage of this
approach is that it iý catalytic and theoretically can be used to recruit any
protein, even thp•p at exist in a multisubunit complex.

Several cations for Protac therapy are possible. In cancer, the
predomin~iproach to treating patients is chemotherapy and radiation.
Both of e-orms of therapy result in complications because of effects
on norfal gells. Therefore, development of therapeutic approaches to
spdcificalIwtarget cancer-causing proteins without affecting normal cells
is desirable.
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Fir- t. P ,tal tarets MetAP-2 to SCF. Prcttac- is a thimeinc molectie that cowmi of a
phxoPhopeptidr, mtoitty and a small m4,tectu!e mnoiety fhlia i]ntetads with the ptotin vsreet
(Sakamrot et o., 2001) (See "Am imrr.)

To test the efficacy of Protacs in iirro~ad rn vivo, several components
are essential. First, a functional El3 gase is necessary, either in purified
form or isolated from cell extracutAdditional components of ubiquitina-
Lion reaction, including ATP, Ml, F2, and ubiquitin, are also required.

Second, a small peptide or moleciiu recognized by the E3 ligase must be
identified. Finally, a target wfth'a-well-characterized binding partner must
be selected that will be chedficaU linked to the peptide. Finally, successful
application of Protacs te 1i0' y depends on the ability of the Protac to
enter cells to target t1,.w jo~ein ,for ubiquitination and degradation. For
clinical application, thirpeutic drug concentrations are usually considered
to be in the nanomolange.

In add~ition to the u ý o rotacs for the treatment of human disease,
these mole wespr Wd'¢ a chemical genetic approach to "knocking down"
proteins to study their function (Schneekloth et a., 2004). The advantages
of Protacs a, 3 tihaithey are specific and do not require transfections or
transduc~ jtacs can be directly applied to cells or injected into ani-
mals withovdtlfe use of vectors. Given the increased number of E3 ligases
idenfifld7b the Human Genome Project, &he possibilities for different
combbi ni of Protacs that link specific targets to different ligases are
unlimited. This chapter describes general strategies of testing the efficacy of
Protacs using two E3 Jigases as an example: SC(-0W.C' and Von Hippel
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lindau (VHL) complexes (Ivan et at., 2001; IKaelin, 2002). Three different
targets will be described: methionine aminopepfidase-2 (MetAP-2), estro-
gen receptor (ER), and androgen receptor (AR). We will provide an
overview of binding assays, transfections, immunoprecipitations, and ubi-
quitination and degradation assays of the proteins iargeted to ubiquitin
ligases by Protacs.

Strategies to Assess the Efficacy of Protacs In Vitro

As proof of concept, we generated a Protac molecule that targets the
protein MetAP-2 for ubiqtrilination and degradation. MetAP-2 cleaves the
N-terminal methionine from nascent polypeptides and ihone of the targets of
angiogenesis inhibitors fumagillin and ovalicin (Griffih •et al. 1997; t 9#0 1 ,
AM 998; Sin et at., 1997). Ovalicin covalentl] bds to MetAP-2 at the
His-231 active site. Inhibition of MetAP-2 is th Aght to block endothelial
cell proliferation by causing GI arrest (Yeb er aLl 2000). MetAP-2 is a
stable protein that has not been demonsirated to be ubiquitinated or an
endogenous substrate of SCFO'Tnc'. For these reasons, Met-AP2 was
chosen to be the initial target to test Protac<

The heteromeric ubiquitin ligase, Stf mTRcI' (Skpl-Cullin-Fbox-Hrtl),
was selected because the F-box prmtein'fi-TRCP/E3RS was previously
shown to bind to IKBd (inhibitor 'bfNFicBa) through a minimal phos-
phopeptide sequence., DRHDS*GLDS*•M (phosphoserines indicated by
asterisks) (Ben-Neriah, 2002; Kaiia and Ben-Neriah, 2000). This 10-amino
acid phosphopeptide was linked ;oiwalicin to form the Protac (Protac- ) as
previously described (Sakamitofa/., 2001).,

MerAP-2-Prorac CouplnAsav

MeIAP-2 (9 AM) wisiibated with increasing concentrations of Protac-
I for 45 miin at room, ,m* e (Fig. 2). Reactions were supplemented with
SDS loading dye, fract nated on an SDS/I1% polyacrylamide gel, trans-
ferred onto a nitr6= odxase membrane, and immunoblofted with rabbit
pobylonal antiMet".-2 antisera (Zymed, Inc.). Detection was performed
using enhancqdchahiiwninesnce (Amersham. Inc.).

7-&sue CUP*.*,e
293T~ceI• were cultured in DMEM with 10% (vol/vol) FBS (Gibco,

IMc.), peailin (100 unitsiml), streptomycin (100 mg/ml), and L-glutamine
(2 rM). Cells were split i:5 before the day of transfection and transiently
trasfecetd with 40 pg of plasmid. Cells were 60% confluent in 100-am
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Fir. 2 MetAP-2 binds Protac Vccfic3ytv and in a concenraion-dcpennt manner. (A)
MetAPI2 (9 QM) was inaibatcd wtincreawing cos-c--rtio• Prot¢-1 at roomn
*ictmpcmtar- for 45 min Thc lIst tiwo lanas dcpict MetA?-2 that wts micubted with• cithcr
hree lxB phosphopeptide (IPP, 50 AM) or free ovalicin (OVA•5j pgM), as indicated. Af.te
incubatimon samples were sPpplemented %th SDS-PAGE koisig 4e, fraicanatd by SDS-
PAGE and immunobtotted with MetAPý2 antierumn. (B) San<e ; (A), except MctAP-2 (9 gAf)
plus Pro'ac-] (10 pM) were strpplenled with either IKBophaphopepride: (50 pAM) or
ovalicn (10 ,pM) as indicated- P-tac binding to MetAP-2 was irhifted by. addition of
ovaticin. but no't phasphoprptid-c (B) (Sakanior ct c!4 2001

dishes on the day of transfection. DNAX'2t u of pFLAG-CUL1, 4 d20g
of pFLAG-P-TRCP) was added. Gls Were transfeUced uing k/-
phosphate precipitation as previously dýcribed (Lyapina et aL, 1998). Ce s
were harvested 30 h after transifction. Five micrograms of pGL-1, a
plasmid containing the cytomegi4Ryirus (CMV) promoter linked to the
green fluorescent protein (GEP),cDNA, was cotransfected into cells
to determine transfection ePicitcy. In all experiments, greater than 80%
of the ceils were GF'P-pýtiig at the time of harvest, indicating high
transfection efficiency. `4

Jmmunopre Spinrid Ubiquiinarion Assays

293T cells we 'd with 200 p1 of. lysis buffer (25 mM Tris-Cl. pH
7.51150 mM NaCI~,% Triton X-100i5 mM NaF/0.05 mM EGTA/1.mM
PMSF)- Pellet• _re lysed by vortexing for 10 sec in a 4' cold room, then
placed on ice f 5.nin. After centrifugation at 13,000 rpm in a Microfuge
for 5 miin atI-, supe-matant was added to 20 pi of FLAG M2 affinity
beads (Si and incubated for 2 b rotating at 4+. Beads were spun down
at 13,000 nd washed with buffer A (25 mM Hepes buffer, pH 7.4/0M1%
TMion-M• 10 mM NaCI) and one wash with buffer B (the same as buffer
A but wiv t Tntoi X-100). Four microlitems of MetAP-2 (18 #M) stock,
4 pil of Protac-I (100 AM), 0.5 p1 of 0.1 Ag&lI purified mouse El (Boston
Biochem), I yJ of 0M5 SIgI human Cdc34 E2 (Boston Biochem), and I p of
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25 mM ATP were added to 20 Mi (packed volume) of FLAG beads
immunoprecipitated with SCF. Reactions were incubated for I h at 30' in
a Thermomixer (Eppendor) with constant mixing. SDS-PAGE loading
buffer was added to terminate reactions, which were then evaluated by
Western blot analysis as previously described (Sakamoto et aL, 2001) (Fig-
3). Our results demonstrated that MetAP-2 bound to Protae ,could be
ubiquitinated in vitro in the presence of SCF. These methb' can be
generalized to other ubiquitin ligases provided that a small orole•;ujrjxrr
peptide ligand exists to enable the synthesis of a suitable Pi. and
expression vectors that contain tagged versions of the pronejn or s units
are available. Alternative tags (e.g., myc or HA) have been.'used, and the
resin can be cross-linked with an antibody, which~caVii~ n be used to
immunoprecipitate the E3 ligase from mammalian .&I'Both the ER and
AR are members of the steroid hormone receýpto&-stperfamily whose
interactions with ligand (estrai ymd testo mre, respectively) have
been well characterized (Fig .The ER has been implicatedin the,
progression of breast cancer owel) et et.,•003). Similarly, hormone-
dependent prostate cancer cells grow in dnse to androgens (Debes
et aL, 2002). Therefore, both ER and .AR- am logical targets for can-
cer therapy. To target ER for ubiquitihalion and degradation, a Protac

A B

:~ 7 . -.. b..3~

StZ 12 Ix Ix 2

Fic. 3.Proc�ws MetAP-2 ubiqtziti by SGF_ (A) Ubiquktimfim of the
46,kDa fragimeqs-zA--- 2MetAP-2-Prot&l mixtture was added to either control (muck)
or SCFII6T 7 '% ý(+-) ;=pplcevted witb A]]' phis purified El, E2 (Cd$64), and ubiquit~in

S(504jwjas also tested as EZ in the re.dcos. whikh rmWlted in dh uan de of
- 1i ea-AP- *rt C&d4 (data mot showne.

an~d were ýe(ed by SM-PAGE folkW'wed by aten )
(B) ttbiqukinason of IuieU-kh J67 kWa) W7=1-Z Sinne (A). ený tha h 67AkDa

prepara6tioufMetAZuwasved,=dE1E f
mtwoold highe (2x) level--, assbdiated (Sakxnos eaL. 2Wt).
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Flag Cul-IJfl-TRCP + +

Pro=a +

Esttadiol +
IrBa phop opeptlde -- +

Libiquitin + +
ER ++

UbER (

- ER

F;, 4. 'lhoac.-2 activates ubdquitination of ER L,•TuyTrPuxihed ER wa5 incubated w'ith

rccarnbnant EI, E2_ ATP. ubiquiti. atnd imNobil d CFej isoLicd fTroM arntimal cel
hy vNiruc of Flag tags on co-ansfected Gull azd1 fiOTRCP. Rewa, were mumnted
with the indicated t.-ncentractio of Prftac.2, imatt"d for 60 mi n at 30% and monitored by
SDS-P'AGiF followed by immunobkmimng wftNvn anti-ER antibody (Sakamoto er at., 2W3).

(Protac-2) was synthesized, contan the IBo phosphopeptide linkoed to
estradiol (the ligand for ER),(Sakamoto et al, 2003).

Determination of Protein lkgadation of Ubiquitinated Proteins In Vitro

The success of Protacs depends not only on efficient ubiquitlination of
the proposed target ntso degradation of that target in cells. Several
approaches can be sl~oth in vitro and in vivo to demonstrate that the
target is being desfr • L First, demonstration of degradation in vitro can
be performed wiifftified 26S proteasome. For these experiments, we
used purified pstpoteasomes as previously described (Verma et aL,
2000 2002). ,4%/

Ubiquitint assays were first performed with the rmaunoprecipi-
tated E3 bfpurified target, El. E2, ATP, and ubiquitin with Protac.
Purified 'It t26S proteasomes (40 Ad of 0.Smglml) were added to ubiqui-
tinatedtprotiin (e.g., ER) on beads. The reaction was surpplemented with
6 td of am ATP, 2 ;J of 0.2 M magnesium acetate, and ubiquitin
aldehyde (5 AN final concentration). The reaction was incubated for 10
mrin at 30° with the occasional mixing in the Thermomixer (Eppendorf). To
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verify that degradation is due to proteasomes and not other proteases,
purified 26S proteasomes were preincubated for 45 mrin at 30' with I mm
of 1, 10 phenanthroline (Sigma) (a metal chelator and inhibitor of the
RPN 11 dI'ubiquitinating enzyme in the 26S proteasorne) (Fig., 5).

Strategies to Assess the Efficacy of Protacs In Vjo I.

Clinical application of Protacs is dependent on successfulhitiqutiination
and degradation of the protein target by endogenous ubiquitin ligases and
proteasomes within cells. There are several approaches to tes(i the efficacy of
Prolacs using cell extracts or application directly to cells. Dep;ending on the
polarity of the Protac, efficiency of internalization in ttlls is variable. If
Protacs arc hydrophilic., such as the case with the _rbiac-l that contains
the IKBa phosphopeptide, extracts or microinjectibas are possible ap-
proaches. For cellpermeable Protacs, it is be possible to directly bath apply
Protacs to cells.

Degradation Experiments with Xen;opus ARtracts

Extracts from unfertilized Kenopus lai.v. "eg were prepared on the day
of the experiment as previously described (urray,-1991). MetAP-2 (4 P1 of
9 ptM) was incubated with Protac±•(50 ýM) at room temperature for 45

A B

o 0 to IQolow Mo-,-

F b,. 5. tU ed ER is degraded by the 26S p•oeasomc. (A) Ubiquitination
re~actions perfbnied as describcd in Ihe Legend to Figý SA svere wipp~crited wlUb purifed
yeast 26S 0,VAOms.• Within 10 =in, wao•ipt• degradatim of ER was obsved. (B)
Purfied 26S pr~mimwi prcyanrtiom were preisicub3ted in 1.f10 Oealhrollne (I mM) or 1,7
pbena*nrl (I mMC) before .dditi-on The metal c1hetor I.10 phebamiftm inhibts the
Rpal 1-insiatd dmbitnating acti•ity, tit is requird for substrte degrdatiow by the

rn-te.smw Degraiation of ER wa& patiafly inklhited by additim of1,0n =Mb rawioe, bulit
oTx the inactiv derivative 1,7 pbenm• o (lSne moto (ka evo e ).
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miin. The Met.AP-2-Protac-I mixture was added to 10 pl of extract in
addition to excess- ovalicin (10 gAM final concentrafion), The excess of
ovalicin was added to saturate any free MetAP-2 in the reaction. Additional
components in the reaction included constitutively active tKK (IKKýEE;
0.4 jig) and okadaic acid (10 jM final concentration) to maintain phos-
phorylation of the IBo peptide moiety of Protac. To test for specificity
of proteasomal degradation, various proteasome inhibitors *ere used,
including N-aceyl-leu4eu-norleucinal (LLnI.. 50 pM final) or epoxomicin
(10 ttM final). Protease inhibitors chymotrypsin. pepstatin. and, leupeptin
cocktail (15 jug/ml final concentration) were also added to the extracts.
Reactions were incubated for time points up to .30 min at rootm temperature

C54A and terminated by adding 50 yl of SDS loading buffer. Samples were then
evaluated by Western blot analysis using MetAP-2 atfiserum (Fig. 6),

Microinfrcton as a Method to Study Effects of ,Proracs on Ubiquitination
and Degradation of Target Proteins

Pro.acs that. contain a phosphopeptide do nt enter cells efficiently.
Various protein transduction domains, lipid--basd transekcion reagents. and
Clectroporatio r er transient tran~sf 'n methods can be tested. How-

--- 7evrto z-otacs; ente refl7n coi njectt ons were performed.
For these experiments, Protac-3 ( ix cz) 0hosphopeptide-testosterone was
synthesitzed to target the AR (Sakamoto et at, 2003). As a readout of pro-
tein degradation, 293 cells stably::expssi.ng AR-GFP were selected using
G418 (600 pg//ml). Before microinjections, cells were approximately 60%
confluent in 6-cm dishes.

MetAP-2-Prota-I + OVA

0 0 2 10 15 W0 30 30 V0 30

F ~. kMe 1kAPvotc but ntot free MctAP*2 is degraded in Xenopus "tracts.
The MctAP$P-oZe-1 n mixture or MctAP-2 alone was added to Xenopw egg extrati

ftwified widro.,'in (OVA; 100 Al), IKK-EE (0.4 ,g), and okad acid (10 pjw4 Where
indicated, ;ecjon -ene eid=c deprid of TKK-EE or akadaic acid (OA) or were hwther
suplemeitd'hith 50,M LLaL or 10 pN epoxemin (Ep), Reactiom were incubated for
the indicated fime pain at rmom Iipetature, terminated by wdftg SDS-PAGE Iauding
dye, and e•-uaied by SDS-PAGE 16Ihoyed by Weatcra blotfng vith anti-MetAP-2 aztiserwn
(Sakamn'ot• t 2001)o
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Protac-3 diluted in a KCO solution (10 yM fina!) with rhodamine dex-
tran (molecular mass 10,000 Da; 50 pg/mI) was injected into cells through a
microcapillary needle using a pressurized injection system (Picospritzer 1;
General Valve Corporation). Coinjection with rhodamine dextran is criti-
cal to ensure that decrease in AR-GFP is not due to leakage of protein
from cells after microinjection The injected volume was 0.2 pi,,represent-
ing 5-10% of the cell volume, GFP and rhodamnine fluorescebew can be
visualized with a fluorescent microscope (Zeiss) and photoiaphs taken
with an attached camera (Nikon). Within 1 h after microinjection, disap.
pearance of AR-GFP is visible (Fig. 7). Cells should remain rhodamine

Deg= of AR-GFP Ptrown
Disauppeaane (out o >200 ca1ls)

1. NONE 4

Z. MINIhMAL 16

3. PARTIAL 29

4. CODM M-ETE 51

lru 7, Micinecti4 leroac eds to AR-43FP degradation in cells, Protac-3 (10 IuW in
the i,*rohijction *edt#iffa ii~toduticd using a Pimpntzer II pressurized microi=r
into 293^11- cellk in azolution contaiing KCI (2po) a• d rbodamine dextran (50 pgfml),
Appm~dinatety ~16% Wotal cAl voliwne was injected- (A) Ftotac-3 induces AR-GFP
dw4p"Iearane 1•,iti ', min. The top paneis show cell •o•phlogy under liglu miroucpy
overlaid wfthJi of c& irjected with Protc as i•dicated bysbcida:ine fluoreswenc

(pink c r) ,bottom panels show images of' GF fluores.ence. By I k. GFP sigml
disappeared in most all microinjected cells. To quanttify tbese results we injected mmoe tan
20D cclls' cks;le the degree of GFFdis a oe as being ether none (1), minim) (2),
partia (3), iecoWplete (4). Euinples hlinea cah categor and fth tabated. results are hO~wn
in (B). These results were reproducible in tb= Wee ndeenrt cxpesincmei performned an
stpgrate days with 30~-50 cells injected per day (Sakarnato e't at, M~), (See color irsert.)
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positive provided that injection has not caused lysis of cells or leakage of
AR-GFP from cells. Greater than 200 cells per experiment (in three
separate experiments) provide data demonstrating that Protacs induces
degradation of the larget. AR.GFP disappearance can then be quantitated
by categorizing the intensity of GRP signal as indicative of complete
disappearance, partial disappearance, minimal disappearance, or no diap-
pearance. To verify that the disappearance of AR-GFP from bells is pro-
teasome dependent, cells weie pretreated with proteasonin inhibitor
epoxomicin (10 pM final) for 5 h before mnicroinjections or were coinjected
with epoxomicin (10 PW).

Methods to Test a Cell-Permeablv Pro rac

Reagents capable of redirecting the substrate sp city of the ubiqui-
tin-proteasome pathway in protein degradatioti Would be useful experi-
mental tools for modulating cellular phenotyp•and potentially acting as
drugs to eliminate disease-promoting proteins. To use Protacs to remove a
gene product at the posttranslational level, 6 ce-permeable reagent. would
be necessary. A HIFla-DHT Protac was le'veloped for this purpose. Given
the lack of small molecule E3 ligase ligapdsý, the seven amino acid sequence
ALAPYIP from hypoxia-inducible factovlo (HliFla) was chosen for
the E3 recognition domain of Protac- ,4 (Schneeldoth er at,. 2004). This
sequence has been demonstrated, to be the minimum recognition domain
for the Yon Fi-ippel-Lindau tumor sdppressor protein (-VHL) (Hon et al.,

A0
ono

H A47PA ai&0 WM WNA?

Aqa6WA Wot0

Fw & C=m•,4 SnSutre of HW DHT Pctx (ScneekMoh er al, 20WO4
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Pw 293 m-m

c

Fia. 9. FRIF Dn~I mediates AR-CiFP degradafion in a prtasmdependent
nmmerM A3'ýclIO$ X 10' ceIsho1) were plated at 50% rxM&fimXn in a Volumre Of
200; pI o med-"ia (w Wersel dish. (A and B) Protac Wnu=e AR-GF? disppearance within
60 mm =rta if SD-., at 25-jAM roncentration or DMSO control in a volume of*.60,6
was added, C~aw:L visumhred muler light (top) or flisrescent (bottom) microsop I
h Rfter tree boogrephs were taken with a SCS type, 12. 35-mmineamra attached to an
Olympus ffucktunm inverted mimerocope, (B) AR-OF? protein is decreased in cells treated
with Prol!FLyfues were 1prepare4 krm purntal ocels (293 par) at AXt-OF? expressinag celia
treated with Pý6tac (+MT) DMSO, or no trearment (None> for 60 mn-le Western blot analy-sis
was perforned wfth rabbt poftyclai anti-AX antisera (1:1000 UBI) or fl-stbulin (12M0
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2002; Kaelin, 200-2). VHL is part of the VBC-Cu12 E3 ubiquitin ligase
complex. Under normoxic conditions, a proline bydroxylase catalyzes the
hydroxylation of 17IFl1 at the (Epstein et aL, 2001) central proline in the
ALAPYIP sequence. This modification results in recognition and polyubi-
quitination by VHL HIFIve is constitutively ubiquitinated and degraded
under normoxic conditions (Kaelin, 2002). In addition, a poly-b-arginine
tag derived from HIV tat was added to the carboxy terminus oft:x peptide
sequence to confer cell permeability and prevent nonspecifi' proteolysis
(Kirschberg er al., 2003: Wender er aL, 2000) (Fig. 8:, This Protac
should then enter the cell, be recognized and hydroxylntcf Iby a prolyl
hydroxylase, and subsequently be bound by both the VHL E3 ligase and
the target, AR.

The 293 cells stably expressing AR-GFP were ufd't. study the effects
of HIF w-DHT Protac on AR degradation. For thest experiments, greater
than 95% of cells expressed AR-GFP. On thbd.y before experiments,
cells were plated in 96-well plates with 200 jl of media at 60% confluence.
Protac was dissolved in DMSO and wal.added to cells at concen-
trations ranging between 10 jrM-100 pM.ý Th7 presence or absence of
GFP expression after Protac treatment determined by fluorescent
microscopy. A time course was perfopcd, but for HIFle-DHT Protac,
the effects were observed within 2, Toh:asses proteasome-dependent
degradation, cells were pretreated ith .epoxomicin (10 IM final concen-
tration) for 4 I before adding Protam. Western blot analyst was performed
to determine levels of AR-GFP ýig. 9).

To measure the protein lcv elpf AR-GFP after Protac treatment,
the cells were harvested, tashed with PBS once, then pelleted at
1500 rpm. Cells were lyset$-vwit, 6 oiling SDS loading buffer (30 pl), then
boiled for 5 nin. LysaestwA1i64subjected to 8% polyacrylamide gel elec-
trophoresis, and the prq)ý?& were transferred to nitrocellulose membrane.
Western blot analysis4•=14erformed with antiandrogen receptor (1:1000)
and anti-beta tub antisera. Detection was determined using
chernilumninescen )

Santa UCrw') W)=AP6=n*in izibibir Prtc-nduccd degnatuim of ARt-OFP. QUl ware
plated at a of " 3 x t celusotu and treated with 10 PM cpoxomicid (Calbiachem) or
DM50 for ~4*~~ore adding Protac (25 ^M for 60 Tun. (D) WestemW rn lt alysis was
perform&wit ts in 96veg dibes treted with Protac (25 ^M), DMS0 (ket), poxmiin
(IQ0pM). m (10 #M) + Pmm (5$ or 25 pM) *r Protac *ale (50 or 25 AM)
(Schneckioti et al.. 20104). (See color inseit)
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